In [1]:
import graphlab
In [3]:
image_train = graphlab.SFrame('image_train_data/')
image_test = graphlab.SFrame('image_test_data/')
In [9]:
graphlab.canvas.set_target('ipynb')
In [10]:
image_train['image'].show()
In [12]:
raw_pixel_model = graphlab.logistic_classifier.create(image_train, target='label',
features=['image_array'])
In [13]:
image_test[0:3]['image'].show()
In [14]:
image_test[0:3]['label']
Out[14]:
In [15]:
raw_pixel_model.predict(image_test[0:3])
Out[15]:
In [16]:
raw_pixel_model.evaluate(image_test)
Out[16]:
In [17]:
len(image_train)
Out[17]:
In [ ]:
deep_learning_model = graphlab.load_model('http://s3.amazonaws.com/GraphLab-Datasets/deeplearning/imagenet_model_iter45')
In [ ]:
image_train['deep_features'] = deep_learning_model.extract_features(image_train)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: